Biodegradation of aromatic compounds by Escherichia coli.

نویسندگان

  • E Díaz
  • A Ferrández
  • M A Prieto
  • J L García
چکیده

Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fungi growing on aromatic hydrocarbons: biotechnology's unexpected encounter with biohazard?

The biodegradation of aromatic hydrocarbons by fungi has traditionally been considered to be of a cometabolic nature. Recently, however, an increasing number of fungi isolated from air biofilters exposed to hydrocarbon-polluted gas streams have been shown to assimilate volatile aromatic hydrocarbons as the sole source of carbon and energy. The biosystematics, ecology, and metabolism of such fun...

متن کامل

Crystal structure of the long-chain fatty acid transporter FadL.

The mechanisms by which hydrophobic molecules, such as long-chain fatty acids, enter cells are poorly understood. In Gram-negative bacteria, the lipopolysaccharide layer in the outer membrane is an efficient barrier for fatty acids and aromatic hydrocarbons destined for biodegradation. We report crystal structures of the long-chain fatty acid transporter FadL from Escherichia coli at 2.6 and 2....

متن کامل

Oxygenation reactions of various tricyclic fused aromatic compounds using Escherichia coli and Streptomyces lividans transformants carrying several arene dioxygenase genes.

Bioconversion (biotransformation) experiments on arenes (aromatic compounds), including various tricyclic fused aromatic compounds such as fluorene, dibenzofuran, dibenzothiophene, carbazole, acridene, and phenanthridine, were done using the cells of Escherichia coli transformants expressing several arene dioxygenase genes. E. coli carrying the phenanthrene dioxygenase (phdABCD) genes derived f...

متن کامل

Biodegradation of polycyclic aromatic hydrocarbons by Pseudomonas species

Biodegradation of polycyclic aromatic hydrocarbons, toxic compounds widely distributed in the environment by bacteria, is a cheap and safe cleaning up method. The present study attempts to isolate and characterize dioxygenase-producing bacteria which are able to degrade phenanthrene and pyrene from refinery soils. It also aims to assess in vitro biodegradation. To do so, two contaminated soil s...

متن کامل

Biodegradation of polycyclic aromatic hydrocarbons by Pseudomonas species

Biodegradation of polycyclic aromatic hydrocarbons, toxic compounds widely distributed in the environment by bacteria, is a cheap and safe cleaning up method. The present study attempts to isolate and characterize dioxygenase-producing bacteria which are able to degrade phenanthrene and pyrene from refinery soils. It also aims to assess in vitro biodegradation. To do so, two contaminated soil s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology and molecular biology reviews : MMBR

دوره 65 4  شماره 

صفحات  -

تاریخ انتشار 2001